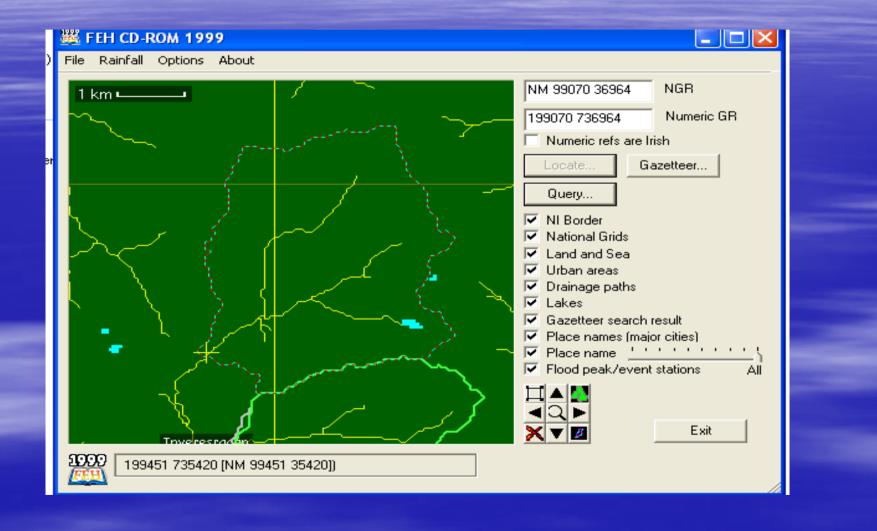


PLANNING A HYDRO PROJECT IN A NATIONAL PARK

ROBERT G PARKINS C Eng MICE

FOUR STAGES ARE CONSIDERED IN THE BUILDING OF A HYDRO PROJECT

PRELIMINARY STUDIES
SCHEME DEVELOPMENT & PERMISSIONS
DETAIL DESIGN & TENDER
CONSTRUCTION AND COMMISSIOINING


THIS PRESENTATION CONSIDERS A MEDIUM HEAD SMALL HYDRO **PROJECT IN SCOTLAND UP TO STAGE TWO – PLANNING** WITH SOME EXAMPLES FROM A LOCAL **PROJECT IN THE LAKE DISTRICT** NATIONAL PARK

Assuming a potential project has been identified These are the headings for the PRELIMINARY STUDIES:

- STUDY MAPS & VISIT SITE
- DEFINE CATCHMENT (FEH DATABASE) *
- DETERMINE LIKELY OPERATING HEAD
- RUN HYDRA MODEL
- FROM FLOW/DURATION CURVE MANIPULATE FLOW OPTIONS*
- ESTIMATE DIAMETER OF PENSTOCK *
- OBTAIN BUDGET COST FOR TURBINE/GENERATOR
- ESTIMATE PROJECT COST

Assuming a potential project has been identified These are the headings for the PRELIMINARY STUDIES:

- STUDY MAPS & VISIT SITE
- DEFINE CATCHMENT (FEH DATABASE) *
- DETERMINE LIKELY OPERATING HEAD
- RUN HYDRA MODEL
- FROM FLOW/DURATION CURVE MANIPULATE FLOW OPTIONS*
- ESTIMATE DIAMETER OF PENSTOCK *
- OBTAIN BUDGET COST FOR TURBINE/GENERATOR
- ESTIMATE PROJECT COST

NTER HYDRO TECHNOL A DIVISION OF R.G. PARKINS & PARTNERS D

Run date / time:	26 March 2008 at 14:02
Catchment Characteristics file:	c::progra~*)hydraidataiesrag.cof
Catchment Characteristics	
Total area:	13.2 km2
Rainfall (average annual):	2070.3 mm
Potential evaporation (average an	unual)831.7 mm
Flow Regime Results	
Q95 (% of mean):	11.3 %
Mean flow estimate:	U 71 m3/s
Q95 (absolute):	0 09 m3/s
Flowr %e} (% of mean) ∕ 2 400 ↓ 7 950 ↓	₹
	* *
//e) (% of maan) 2 400 - 7 350 - 2 300 - -	A A A A A A A A A A A A A A A A A A A
//e) (% of mean) 2 400 - 7 360 - 2 300 - 5 250 -	
Ke) (% of mean) 2 400 7 350 2 300 6 250	
//e) (% of mean) 2 400 - 7 360 - 2 300 - 3 250 - 1 200 -	n Mean fuw estimate

Power Potential Report Esragan1

Run Date / Time: Power Results file: Flow Results file:

Nean flow estimate: Provisional rated flow: Residual flow: Rated flow: Gross head: Rated nett head:

Applicable Turbines Marginally-applicable turbines indicated by "mgnt)"

Francis Spiral Case

Gross avarage annual output:	2155 5 MWh
Nett average annual output:	2047.7 MWh
Maximum power:	931.9 kW
Rated capacity:	894.6 kW
Minimum flow:	0.5 m3/s

Turgo

Gross average annual output: 2438.2 MWh Nett average annual output: 2316.3 MWh Maximum power: 878.1 kW Rated capacity: 842.9 kW Minimum flow: 0.2 m3/s

Crossflow

2220.7 MWh
2109.6 MWh
812.1 kW
760.1 kW
0.3 m3/s

26 March 2008 at 14:02 c:\progra~1\hydra\data\esrag.ppr c:\progra~1\hydra\data\esrag.fn

> 0.71 m3/s 1.30 m3/s 0.11 m3/s 1.19 m3/s 93,50 m 86.96 m

Assuming a potential project has been identified These are the headings for the PRELIMINARY STUDIES:

- STUDY MAPS & VISIT SITE
- DEFINE CATCHMENT (FEH DATABASE) *
- DETERMINE LIKELY OPERATING HEAD
- RUN HYDRA MODEL
- FROM FLOW/DURATION CURVE MANIPULATE FLOW OPTIONS*
- ESTIMATE DIAMETER OF PENSTOCK *
- OBTAIN BUDGET COST FOR TURBINE/GENERATOR
- ESTIMATE PROJECT COST

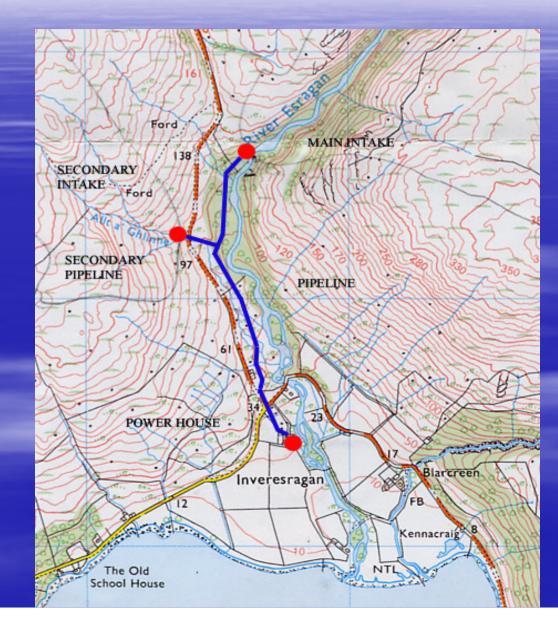
CONS	STAN	ITS		Pipe Dia.	D	0.8	m					
				Head	Н	93.5	m					
				Pipe Fricti		0.03	mm	Total	£0			
				Pipe Leng	th L	1350	m					
				Constant 1		notused						
				Constant 2		0.9						
				Efficiency		0.85						
				£/unitearr	ned	£0.08						
Flo	w	Velocity	Reynolds	Friction	Fric. Head	Other	Total	Available	Power			
			Number	f	Loss	Losses	Losses	Head	Available			
(cume	ecs)	(m/s)			(m)	(m)	(m)	(m)	(kW)			
	0	0.000	0.00E+00	#DIV/0!			#VALUE!	#VALUE!	#VALUE!			
	0.2	0.398	2.79E+05	0.0036	0.197	0.007	0.204	93.296	155.589			
	0.4	0.796	5.58E+05	0.0033	0.708		0.737	92.763				COLUMN STREET,
	0.6	1.194	8.38E+05	0.0031	1.515	0.065	1.581	91.919	459.882			
	0.8	1.592	1.12E+06	0.0030	2.613	0.116	2.729	90.771	605.515			
	1	1.989	1.40E+06	0.0029	3.999	0.182	4.181	89.319	744.788			
	1.2	2.387	1.68E+06	0.0029	5.673	0.261	5.935	87.565	876.194			
	1.4	2.785	1.95E+06	0.0029	7.635	0.356	7.991	85.509	998.227			
		1200.000	T									and the second se
		1000.000	1									
		800.000										
							- Series 1					
		600.000					JEI IES I					
		400.000	/									
		200.000	+									
		0.000		-								
			0	0.5	1	1.5						
											1	
											1	

Assuming a potential project has been identified These are the headings for the PRELIMINARY STUDIES:

- STUDY MAPS & VISIT SITE
- **DEFINE CATCHMENT (FEH DATABASE)** 6
- DETERMINE LIKELY OPERATING HEAD
- RUN HYDRA MODEL
- FROM FLOW/DURATION CURVE MANIPULATE FLOW OPTIONS7
- ESTIMATE DIAMETER OF PENSTOCK 8
- OBTAIN BUDGET COST FOR TURBINE/GENERATOR
- ESTIMATE PROJECT COST

INPUT ALL INFORMATION INTO SPREADSHEET TO DETERMINE BEST RETURNS *

- PRELIMINARY DISCUSSIONS WITH E A or SEPA, E N or SNH PLANNING OFFICERS AND POWER COMPANY
- PREPARE OUTLINE SCHEME DRAWING AND REPORT *


ESRAGAN	HYDRO S	CHEME			APPENDIX	(C/1	
H22041		••••=••=					
ESTIMATE	OF PAYB	ACK PERI	ODS FOR MAI	V CATCHM	ENT		
BASED ON	6p PER U	INIT					
Design Flo	w		0.8	1.0	1.2	1.4	1.6
Gross head			86.0	86.0	86.0	86.0	86.0
600 pipe di	a						
head loss			11.6	17.2	24.5	33.1	43.0
net head % of gross I			74.4	68.8	61.5	52.9	43.0
% of gross i av annual po		+ (\\\\\b)	86.5 1603.0	80.0 1656.0	71.5 1587.0	61.5 1431.0	50.0 1011.0
rated capac			412	491	537	545	540
an rev@ 6p			96180	99360	95220	85860	60660
civils costs			354000	354000	367000	359000	361000
m & e + trai	nsmission		650000	678000	701000	744000	799000
fees	13111331011		100400	103200	106800	110300	116000
project cost			1104400	1135200	1174800	1213300	1276000
payback per			11.48	11.43	12.34	14.13	21.04
700 pipe di	а						
head loss			5.2	8.0	11.3	15.3	19.8
net head			80.8	78.1	74.7	70.7	66.2
% of gross I			94.0	90.8	86.9	82.2	77.0
av annual po		t (MWh)	1744	1880	1932	1921	1854
rated capac	,		448	558	654	732	791
an rev@6p	1		104640	112800	115920	115260	111240
civils costs			381000	381000	385500	390000	394500
m & e + trai	nsmission		650000	678000	701000	744000	799000
fees			103100	105900	108650	113400	119350
project cost			1134100	1164900	1195150	1247400	1312850
payback per	riod		10.84	10.33	10.31	10.82	11.80
			-				
800 pipe di	а						
head loss	u		2.7	4.2	5.9	8.0	10.4
net head			83.3	81.8	80.1	78.0	75.6
% of gross I	head		96.8	95.1	93.1	90.7	87.9
av annual po	ower outpu	t (MWh)	1820	1997	2100	2150	2150
rated capac	ity		468	593	711	819	917
an rev@6p			109200	119820	126000	129000	129000
civils costs			424000	424000	428000	433000	437000
m & e + trai	nsmission		650000	678000	701000	744000	799000
fees			107400	110200	112900	117700	123600
project cost			1181400	1212200	1241900	1294700	1359600
payback per	riod		10.82	10.12	9.86	10.04	10.54

INPUT ALL INFORMATION INTO SPREADSHEET TO DETERMINE BEST RETURNS *

- PRELIMINARY DISCUSSIONS WITH E A or SEPA, E N or SNH PLANNING OFFICERS AND POWER COMPANY
- PREPARE OUTLINE SCHEME DRAWING AND REPORT *

SCHEME DEVELOPMENT AND PERMISSIONS

- COMMISSION TOPOGRAPHICAL SURVEY
- COMMISSION CDM-C
- OPEN NEGOTIATIONS WITH EA or SEPA and ENVIRONMENTAL INTERESTS
- SET-UP FLOW MONITORING (assuming ungauged catchment)
- RUN 'LOW FLOWS' COMPUTER MODEL *
- CONSIDER FURTHER POWER PRODUCTION OPTIONS *
- SCOPE ENVIRONMENTAL STUDIES & APPOINT SPECIALISTS

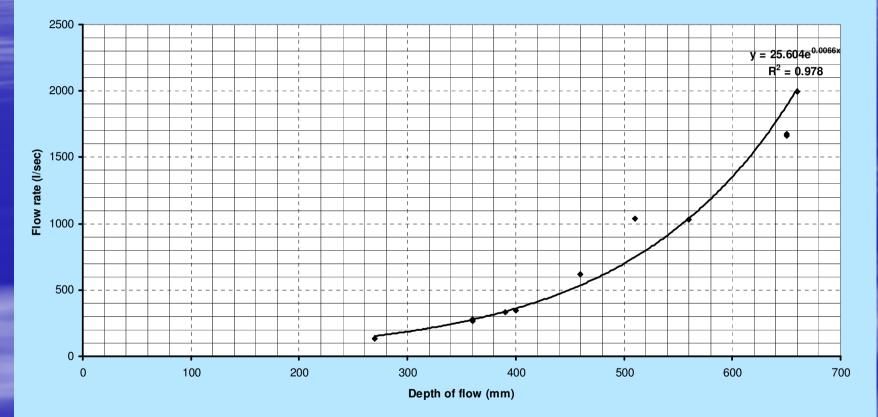
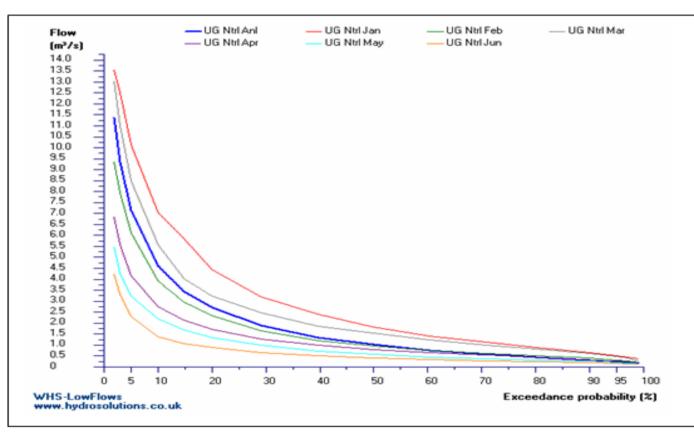


Figure 5: Relationship calculated between measured river flow and depth.


SCHEME DEVELOPMENT AND PERMISSIONS

- COMMISSION TOPOGRAPHICAL SURVEY
- COMMISSION CDM-C
- OPEN NEGOTIATIONS WITH EA or SEPA and ENVIRONMENTAL INTERESTS
- SET-UP FLOW MONITORING (assuming ungauged catchment)
- RUN 'LOW FLOWS' COMPUTER MODEL *
- CONSIDER FURTHER POWER PRODUCTION OPTIONS *
- SCOPE ENVIRONMENTAL STUDIES & APPOINT SPECIALISTS

Monthly Flow Duration Curves

January-June

July-December

SCHEME DEVELOPMENT AND PERMISSIONS

- COMMISSION TOPOGRAPHICAL SURVEY
- COMMISSION CDM-C
- OPEN NEGOTIATIONS WITH EA or SEPA and ENVIRONMENTAL INTERESTS
- SET-UP FLOW MONITORING (assuming ungauged catchment)
- RUN 'LOW FLOWS' COMPUTER MODEL *
- CONSIDER FURTHER POWER PRODUCTION OPTIONS *
- SCOPE ENVIRONMENTAL STUDIES & APPOINT SPECIALISTS

-	f _x												
	A	В	С	D	E	F	G	Н		J	K	L	M
21	21 Table B.1 Power and energy output from compensation flow scenario 1												
	Flow to												
						turbine as							
		River	Comp'n	Available	Flow to	%age of	Net		Power			Gross	
22	River flow	flow Q	flow	flow	turbine	design flow	head	Efficiency	output	x-unit	y₋unit	energy	Net energy
	%age					<u>-</u>					,	3 ,	
23	exceedence	(m3/s)	(m3/s)	(m3/s)	(m3/s)	%	m	%	(kW)	%age	(kW)	kWh/year	kWh/year
24	5%	2.15	0.15	2.00	2.00	25	30.00	80.0	471	0.085	, í		
25	10%	2.15	0.15	2.00	2.00	25	30.00	80.0	471	0.085	471	350617	343605
26	15%	2.15	0.15	2.00	2.00	25	30.00	80.0	471	0.085	471	350617	343605
27	20%	2.15	0.15	2.00	2.00	25	30.00	80.0	471	0.085	471	350617	343605
28	25%	1.90	0.15	1.75	1.75	22	32.20	80.0	442	0.085	457	339953	333154
29	30%	1.60	0.15	1.45	1.45	18	34.20	85.0	414	0.085	428	318592	312221
30	35%	1.40	0.15	1.25	1.25	16	35,90	87.0	383	0.085	398	296537	290607
31	40%	1.14	0.15	0.99	0.99	12	37.30	89.0	322	0.085	353	262621	257368
32	45%	0.90	0.15	0.75	0.75	S	38,40	90.0	254	0.085	288	214698	210404
33	50%	0.80	0.15	0.65	0.65	8	38.70	90.0	222	0.085	238	177352	173805
34	55%	0.70	0.15	0.55	0.55	7	39,10	90.0	190	0.085	206	153373	150306
35	60%	0,57	0.15	0.42	0.42	5	39.30	90.0	146	0.085	168	124944	122445
36	65%	0.50	0.15	0.35	0.35	4	39.50	90.0	122	0.085	134	99699	97705
37	70%	0.40	0.15	0.25	0.25	3	39.80	90.0	88	0.085	105	78149	76586
38	75%	0.33	0.15	0.18	0.18	2	39.80	90.0	63	0.085	76	56254	55129
39	80%	0.27	0.15	0.12	0.00	0	0.00	90.0	0	0.085	32	23548	23077
40	85%	0.23	0.15	0.08	0.00	0	0.00	90.0	0	0.085	0	0	0
41	90%	0.15	0.15	0.00	0.00	0	0.00	90.0	0	0.085	0	0	0
42	95%	0.15	0.15	0.00	0.00	0	0.00	90.0	0	0.085	0	0	0
43	100%	0.15	0.15	0.00	0.00	0	0.00	90.0	0	0.085	0	0	0
44							Max	power (kW)	471		energy	3197573	3133621
45										k\	Nh/year		

PREPARE SCHEME DESIGN DRAWINGS SUFFICIENT FOR PLANNING SUBMISSION

> SCHEME LAYOUT WEIR & INTAKE (inc. fish pass if required) ** PENSTOCK SELECTION ** POWERHOUSE & TAILRACE * TEMPORARY ACCESS TRACKS

- CARRY OUT SITE INVESTIGATION
- REVISIT COST PLAN
- PREPARE & SUBMIT APPLICATIONS FOR IMPOUNDMENT, ABSTRACTION & LAND DRAINAGE LICENSES (method stats)
- APPLY FOR GRID CONNECTION
- APPLY FOR PLANNING PERMISSION
- WAIT FOR DECISIONS! *

PREPARE SCHEME DESIGN DRAWINGS SUFFICIENT FOR PLANNING SUBMISSION

> SCHEME LAYOUT WEIR & INTAKE (inc. fish pass if required) 19 22 PENSTOCK SELECTION 20 21 POWERHOUSE & TAILRACE 23 TEMPORARY ACCESS TRACKS

- CARRY OUT SITE INVESTIGATION
- REVISIT COST PLAN
- PREPARE & SUBMIT APPLICATIONS FOR IMPOUNDMENT, ABSTRACTION & LAND DRAINAGE LICENSES (method stats)
- APPLY FOR GRID CONNECTION
- APPLY FOR PLANNING PERMISSION
- WAIT FOR DECISIONS! 24

PREPARE SCHEME DESIGN DRAWINGS SUFFICIENT FOR PLANNING SUBMISSION

> SCHEME LAYOUT WEIR & INTAKE (inc. fish pass if required) 19 22 PENSTOCK SELECTION 20 21 POWERHOUSE & TAILRACE 23 TEMPORARY ACCESS TRACKS

- CARRY OUT SITE INVESTIGATION
- REVISIT COST PLAN
- PREPARE & SUBMIT APPLICATIONS FOR IMPOUNDMENT, ABSTRACTION & LAND DRAINAGE LICENSES (method stats)
- APPLY FOR GRID CONNECTION
- APPLY FOR PLANNING PERMISSION
- WAIT FOR DECISIONS! 24

PREPARE SCHEME DESIGN DRAWINGS SUFFICIENT FOR PLANNING SUBMISSION

> SCHEME LAYOUT WEIR & INTAKE (inc. fish pass if required) 19 22 PENSTOCK SELECTION 20 21 POWERHOUSE & TAILRACE 23 TEMPORARY ACCESS TRACKS

- CARRY OUT SITE INVESTIGATION
- REVISIT COST PLAN
- PREPARE & SUBMIT APPLICATIONS FOR IMPOUNDMENT, ABSTRACTION & LAND DRAINAGE LICENSES (method stats)
- APPLY FOR GRID CONNECTION
- APPLY FOR PLANNING PERMISSION
- WAIT FOR DECISIONS! 24

